
ArtTalk: Multimodal Interactions in Museums and Galleries

Maria Ascanio Aliño and Trudy Painter and Andrew Stoddard
mascanio@mit.edu, tpainter@mit.edu, apstodd@mit.edu

Abstract

ArtTalk is a web application designed to enhance visitors’ engagement with artworks in museums and
galleries. The application leverages a range of modalities to encourage interaction, including gesture and
speech recognition.

The primary aim of ArtTalk is to encourage visitors to interact with artworks in a more meaningful and
engaging way. The incorporation of multiple modalities makes the experience of interacting with art more
intuitive and accessible for a wider range of visitors.

One of the key features of ArtTalk is gesture recognition, which allows users to place comments on
specific points of interest simply by pointing at them. The application tracks the user’s hand and identifies
the pointing gestures, enabling them to easily and seamlessly place comments without the need for
any additional equipment. In addition to gesture recognition, ArtTalk also uses speech recognition to
identify and confirm the comments users place on specific points of interest. This feature ensures that the
comments are accurately identified, minimizing the risk of misunderstandings or errors.

To further enhance the user experience, ArtTalk provides audiovisual feedback to users throughout the
interaction process. This feedback makes the entire process of interacting with artworks more intuitive
and engaging, providing visitors with a unique and memorable way to experience art.

ArtTalk is a web application that can transform the way visitors interact with artworks in museums and
galleries.



1 Introduction

Museums are looking for ways to increase visitor engagement to ensure they still have a place in the
modern world. A couple of our group members took the MIT CMS class Extending the Museum. During
the class, we met with curators, archivists, gallery owners, and museum designers. Over and over, they
stressed that they wanted to make museum visits more exciting and engaging for visitors. They want to
reframe the museum as a participatory space: accessible to everyone.

One effective way to achieve this is by designing inviting interactive exhibits. The current museum
model, where communication is one-directional from the museum to the visitor, is becoming outdated
as phone and internet use have shifted people’s habits. One way museums have looked to increase
engagement is by trying to turn the museum inside out. They do this by allowing visitors to feel like they
too are leaving a contribution to the museum, and not only can visitors learn about the works, but they
can learn more about themselves and the other people in their community. We are proposing ArtTalk, a
solution to increase visitor engagement in museums by allowing visitors to directly interact with all of the
works, and learn from the people around them in the process.

Figure 1: User pictured top left leaving a comment with his finger

2 System Overview

In a museum using ArtTalk, a user can walk up to a painting. When the system detects a person standing
in front of it, the system announces to the user that they can start gesturing at a part of the painting that
catches their attention. The user notices a part of the painting that they really like. They wonder what
other people have also thought about that part of the work. They point and hold their hand still at that
location.

The system announces to the user, "Someone else said the brush strokes are really intricate and the
layering adds a 3D element to the canvas."

The user decides to add their own comment to that part of the work. They continue to point at that spot
and say “I think the colors blend together really well.” The system repeats their comment back, and the
user confirms that it heard them correctly and has saved their comment for other museum patrons to view.

Pointing and talking about paintings are actions that people are already very familiar with. When
looking at a painting with a friend, when one wants to discuss a part of the painting, they point it out as
a reference to what they will say, and then they share their comments on the work. We aim to replicate
this natural gesture and allow all visitors to connect with one another by leaving comments and exploring
others’ comments on the work.



3 How Does It Work

3.1 Core Technology

ArtTalk is a Next.js web application, written in TypeScript and hosted on Vercel. It employs a variety of
modern technologies and techniques to provide a seamless interactive experience. Google’s MediaPipe
library is used for Hand Landmark detection. Built-in WebKit APIs are used for speech synthesis and
recognition. A Prisma database is used to store comments and the location at which they were added.
Finally, we use p5.js for heatmap visualization, rendering graphics to show where most comments are
located. This visual representation provides an easy way to identify areas of high engagement or interest.

Figure 2: System Diagram for ArtTalk

3.2 Hand Landmark Detection

The process begins with the MediaPipe library, which is used for Hand Landmark detection. We capture
video from the user’s webcam, and with every frame, we pass the image to the MediaPipe model, which
identifies and normalizes the location of the tip of the user’s index finger. To smooth out movements, we
calculate a running average of the finger location.

We then use this data to draw a circle on the painting representing what the user is pointing at. The
system is designed to detect when the user’s finger has paused at a location for more than a second,
effectively "locking in" the location. If a pointer finger can not be detected for more than three seconds,
the system resets back to its initial state.

At every step of this process, ArtTalk incorporates built-in browser speech synthesis that guides the
user at different state points. It provides instructions for pointing, locking in, adding a new comment, and
confirmation.



3.3 Comment Retrieval, Gesture Recognition, and Speech Recognition
Once locked in, ArtTalk initiates three processes: comment retrieval, gesture recognition, and speech
recognition. Comments near a certain radius of where the user has pointed are retrieved from the Prisma
database and displayed. If the system detects a shake-to-undo gesture, calculated from the slope of finger
movement over the last 30 frames, it promptly resets back to the initial state. At the same time, we also
employ WebKit speech recognition to transcribe any comments that the user wants to leave at that spot. A
silence timer is used to detect when the user is done talking, prompting for verification that the comment
is correct or whether the user wants to try again.

3.4 Features and Usability
3.4.1 Landmark Detection Evaluation and Limitations
ArtTalk’s primary feature, the pointing mechanism, works remarkably well. It’s intuitive and easy to
use, providing a smooth experience for users. When being a couple of feet away from the camera and
making sure only one hand was seen, the system was very good at tracking the pointing and locking in the
location. This, however, became a problem when there was someone else in the frame or another hand.
Since the system is currently only tracking one of the hands, it would get confused when more than one
hand was visible.

The ’shake to undo’ feature is another highlight of our system. It allows users to quickly reset and retry
their interactions, enhancing the overall user experience. We did find, though, that it required considerable
fine-tuning and testing to ensure its responsiveness and accuracy.

3.4.2 Speech Recognition Evaluation and Limitations
ArtTalk employs speech recognition for user input, which has proven to be quite efficient. However, its
performance can be affected in loud environments, which is something we’re looking into. When speaking
into the microphone alone, the system did a very good job at recognizing the text the user wanted to
comment on the artwork, but as soon as more people were around, the speech recognition was unable to
filter the voices and would come up with incomprehensible comments.

Something that impressed us was how much easier it was to implement speech recognition and speech
synthesis in a web application. Given that most browsers have built-in APIs that are able to do both, the
logic of the speech synthesis and recognition was fluid.

3.4.3 Testing
To test the system we tested each individual modality and feedback as we worked on them. For gesture
recognition, we were able to find its limitations and tested it within the context we were interested in. For
speech synthesis, we tested multiple voices for the most human-like interaction possible, and for speech
recognition, we stress-tested the system in loud environments as well as with long comments.

3.5 Interesting Failure
An interesting failure that we encountered in our final version of ArtTalk is how the system handles
multiple hands or people in the frame. The Hand Landmark package is configured to only detect one
hand, and provide the landmarks for that one hand. When two hands are in the frame, the system gets
confused about which hand it is tracking. This can cause the pointing circle location feedback to jump
back and forth between different places. The same thing can happen when there are multiple people in the
frame. This compounds the issue, as there are now even more than two hands in the frame. In practice,
this caused issues when someone was sitting down near the ArtTalk display, and had their hand resting in
a place that was in view of the camera. This could cause the circle to get stuck in one place, as it was
actually picking up on the static hand. One way we could remedy this issue is by allowing the detection of
multiple hands. Google’s MediaPipe has the ability to do so (however, only up to 2 hands). We can then
only use the location of the hand that is moving, which can be determined by checking if the location of
one of the hands is not changing, or changing very slowly. To fix the issue of multiple people in the frame,
we would need to use a package other than MediaPipe. However, our current system design does not have
a way to handle multiple people pointing at the same time. We could show multiple cursors on the screen,



but then we would need a way to match who is pointing to who is talking. This is an experiment for future
versions.

4 Project modifications

We had general success with implementing our project. The entire tech stack was based on web libraries
and is compatible with modern browsers.

4.1 Kinect

We originally wanted to implement ArtTalk using a Kinect sensor and projector around an original piece
of artwork. We were able to set up the Kinect on our M1 Macbooks. However, using Kinect was overly
complicated.

We realized we could instead track hand movements using a computer camera and web hand-tracking
libraries. Although computer webcams do not provide depth information, we found that they were
sufficient at estimating finger joint positions regardless. After extensive testing, we found that there was
not any degradation in performance when compared to the Kinect output while providing a significant
simplification in system design.

4.2 Shake To Undo

After the Implementation Studio, we noticed that users would often make mistakes and want to restart.
We didn’t have a way for them to redo their pointing position and comment.

To remedy this, we developed a "shake to undo" gesture. After a user has locked in their position for
pointing, they can shake their hand in front of the camera to restart the process of pointing at a position
in painting. To implement this function, we first needed to study what a shake-to-undo gesture actually
looks like, in the form of hand landmark position data. We noticed that shake-to-undo has a few main
components: rapid movement and multiple direction changes. Both of these can be determined from the
velocity of finger movement. To determine exact values, we created another web endpoint that displays a
graph of the slope of finger movement over the last 30 frames. We then took the absolute value of it, and
then we want to count the number of peaks above a threshold. This captures both objectives - the slope
must be fast enough (showing that the gesture is quick enough), and it must have a count above a different
threshold (to indicate that there are enough back-and-forth movements).

4.3 Activity Heatmap

Figure 3: Heatmap of Realtime Comment Data



During our implementation studio, we received a suggestion that it would be interesting to see where
users are most captivated by a painting. We developed a heatmap of real-time comment data overlaid on
the original painting curators can access at https://arttalk.vercel.app/heatmap.

Curators can use this type of analysis tool to identify popular parts of a painting. It can be used to help
them:

1. Adjust gallery layout to ensure high-engagement pieces are prominently displayed

2. Improve artwork descriptions to highlight the most compelling aspects of a piece or address common
questions

3. Inform future acquisitions to match the interests of their patrons

5 User study

The purpose of our user study was to test the effectiveness of ArtTalk. We focused on the user experience
of the application, assessing its ease of use, effectiveness, and overall impact on the visitors’ engagement
with the artwork.

We conducted the user study over the course of two weeks, and a total of 9 participants were recruited
to take part in the study. Participants were asked to interact with selected artworks using ArtTalk and to
provide feedback on their experience.

During the study, we found that ArtTalk was effective in enhancing visitors’ engagement with artworks.
Participants reported that the application was easy to use, and the gesture and speech recognition features
were intuitive and seamless. Participants also mentioned that the audiovisual feedback provided by the
application enhanced their overall experience of interacting with the artworks.

Something we learned during this experience was that the application was not as effective for certain
types of artworks or exhibits (for example an abstract painting vs. a realistic painting). This made us
realize the importance of tailoring the application to different artworks by either using a narrower radius
for the area of interest or segmenting the images in certain scenarios.

We also learned that users sometimes felt "stuck" in the state of our application. This is if they incorrectly
locked in on a spot and did not know how to "unlock" themselves. This feedback, combined with our
feedback from the implementation studio, validated the need for us to implement the "shake-to-undo"
gesture.

6 Performance

6.1 Crucial Insights
Throughout the development and evaluation of ArtTalk, we gained valuable insights into its performance
and identified areas of success as well as limitations. The project offered a rich learning experience
that allowed us to understand the practical challenges and trade-offs involved in designing an interactive
system for museum engagement.

One notable aspect of ArtTalk’s performance is its successful implementation of gesture and speech
recognition. The hand landmark detection using MediaPipe proved to be effective in tracking users’
pointing gestures and locking in the locations of interest on artworks. Users found this feature intuitive
and seamless, enhancing their interaction with the artworks. Similarly, the speech recognition feature
accurately transcribed users’ comments, providing a convenient and efficient means of input.

However, we also encountered limitations and areas for improvement. One particular challenge was
the system’s handling of multiple hands or people in the frame. Currently, ArtTalk is designed to track
and respond to a single hand, which can cause confusion and incorrect feedback when there are multiple
hands present. This limitation restricts the application’s usability in scenarios where multiple users are
interacting with the system simultaneously or when users are in close proximity to each other. To address
this limitation, future iterations of ArtTalk could explore incorporating multiple hand tracking using
technologies like Google’s MediaPipe, which supports the detection of up to two hands. By distinguishing
and utilizing the movement of the hand that is actively pointing, the system could provide a more accurate
and reliable user experience in multi-user environments.

https://arttalk.vercel.app/heatmap


6.2 Interesting Next Step

An interesting next step that is just out of reach for ArtTalk is the ability to facilitate collaborative
interactions among users. Currently, the system allows users to individually leave comments on specific
points of interest. However, it does not provide a mechanism for users to engage in a conversation or
build upon each other’s comments. Enabling collaborative interactions would open up new possibilities
for visitors to engage with the artworks and with each other. For example, users could reply to existing
comments, initiate discussions, or contribute additional insights related to specific points of interest. By
fostering a sense of community and shared exploration, ArtTalk could deepen visitors’ engagement and
create a more dynamic and interactive museum experience.

6.3 Improvement Plans

To improve the system and take its performance to the next level, several steps can be taken:

1. Enhanced Multi-user Support: As mentioned earlier, incorporating multiple hand tracking and
developing a mechanism to handle interactions from multiple users simultaneously would be a
crucial improvement. This would involve accurately identifying and associating individual users’
gestures, comments, and interactions with specific points of interest, enabling seamless collaboration
and shared engagement.

2. Advanced Speech Recognition: Further advancements in speech recognition capabilities could help
address challenges in noisy environments and improve the system’s ability to filter and understand
multiple voices. Techniques such as voice activity detection and speaker diarization could be explored
to enhance speech recognition performance in real-world museum settings.

3. Fine-tuned Pointing and Commenting Mechanism: Refining the pointing mechanism to accommodate
different types of artworks, such as abstract paintings or sculptures, would be valuable. This could
involve adjusting the radius of the area of interest or implementing image segmentation techniques
to identify specific regions for interaction.

4. User Interface and Experience Enhancements: Iterative design and user feedback could drive
improvements in the user interface and experience of ArtTalk. Streamlining the user journey,
providing clearer instructions, and refining the audiovisual feedback could enhance usability and
overall satisfaction for visitors.

5. Robust Testing and Deployment: Conducting extensive testing and deploying ArtTalk in real museum
settings would provide valuable insights into its performance, user engagement, and scalability. This
would enable the refinement of the system based on real-world usage scenarios and feedback from
museum visitors and staff.

By addressing these areas for improvement, ArtTalk can continue to evolve as a powerful tool for
enhancing visitor engagement in museums and galleries, creating a more interactive and immersive
museum experience.

7 Task Breakdown

7.1 Maria Ascanio Aliño

• Speech Recognition for comment recognition

• Speech Recognition to submit a comment or restart comment recognition (try again vs. correct)

• Speech synthesis logic for each individual FeedbackType



7.2 Trudy Painter

• User interface design

• Workflow and logic for different stages of pointing and leaving comments (React state management)

• Configuring Github repository for web application using Vercel, React, and Typescript

• Setting up backend database and data types to store comments using Prisma

• Heatmap for real-time comment insights

7.3 Andrew Stoddard

• CanvasWithGuesture Component

• Configuring and implementing hand landmark detection

• Algorithm and implementation to detect a "pause" in hand movement to "lock in"

• Algorithm and implementation for "shake to undo"

• Graph endpoint to determine thresholds for "shake to undo"

8 Acknowledgements

This project was influenced by Professor Kurt Fendt who taught the MIT class Extending the Museum
(CMS.636).

9 Tools, Packages, and Libraries

Package/Tool/Library (name and version num-
ber):

NEXT.js (13.3.1)

What machine and OS version did you run it
on (so people will know roughly what compute
power and what environment it needs):

Mac M1 (but should be compatible with any OS)

Where is it available? (eg url): https://nextjs.org/
What did you use it to do? (One word or phrase
is fine if the answer is the obvious, eg speech
recognition, face detection, etc., otherwise ex-
plain a little more):

We used it to handle routing for our full stack web
system.

What was the data type of the input (eg image
as a matrix, mp3 format for sound, etc.):

No input, this was used for web hosting.

How well did it work in terms of accuracy (as
in rough percentage correct, in your experience,
no need to run a formal evaluation), and speed
(as in, fast enough to allow convenient use, or it
slowed down the system):

This framework was efficient for spinning up a
web server quickly.

Did it work out of the box? If not, what did you
have to do to use it?

Yes, worked out of the box.

https://nextjs.org/


Package/Tool/Library (name and version num-
ber):

P5.js (1.6.0)

What machine and OS version did you run it
on (so people will know roughly what compute
power and what environment it needs):

Mac M1 (but should be compatible with any OS)

Where is it available? (eg url): https://p5js.org/
What did you use it to do? (One word or phrase
is fine if the answer is the obvious, eg speech
recognition, face detection, etc., otherwise ex-
plain a little more):

Rendering the circle for user’s pointing feedback
on top of the artwork image and rendering the
heatmap of dots for user comments

What was the data type of the input (eg image
as a matrix, mp3 format for sound, etc.):

It was (x, y) coordinate points

How well did it work in terms of accuracy (as
in rough percentage correct, in your experience,
no need to run a formal evaluation), and speed
(as in, fast enough to allow convenient use, or it
slowed down the system):

This was a rendering package. The rendering was
simple and easy to use for the scope of our project.

Did it work out of the box? If not, what did you
have to do to use it?

Yes, worked out of the box.

Package/Tool/Library (name and version num-
ber):

MediaPipe Tasks Vision (0.1.0-alpha-12)

What machine and OS version did you run it
on (so people will know roughly what compute
power and what environment it needs):

Mac M1 (but should be compatible with any OS)

Where is it available? (eg url): https://www.npmjs.com/package/
@mediapipe/tasks-vision

What did you use it to do? (One word or phrase
is fine if the answer is the obvious, eg speech
recognition, face detection, etc., otherwise ex-
plain a little more):

We used it for hand landmark detection

What was the data type of the input (eg image
as a matrix, mp3 format for sound, etc.):

Image frames (taken one at a time from webcam
stream) and associated timestamps

How well did it work in terms of accuracy (as
in rough percentage correct, in your experience,
no need to run a formal evaluation), and speed
(as in, fast enough to allow convenient use, or it
slowed down the system):

Very fast – worked in real time, and no visible pro-
cessing delay. It had very good accuracy (maybe
95%), and when there was only one hand in the
frame, it almost worked perfectly.

Did it work out of the box? If not, what did you
have to do to use it?

Yes, just had to npm installl. Also had to download
model from Google that detects hand landmarks
to store on our own server.

https://p5js.org/
https://www.npmjs.com/package/@mediapipe/tasks-vision
https://www.npmjs.com/package/@mediapipe/tasks-vision


Package/Tool/Library (name and version num-
ber):

Web Speech API (built-in to browser)

What machine and OS version did you run it
on (so people will know roughly what compute
power and what environment it needs):

Mac M1 (but should be compatible with any OS)

Where is it available? (eg url): https://developer.mozilla.org/
en-US/docs/Web/API/Web_Speech_
API

What did you use it to do? (One word or phrase
is fine if the answer is the obvious, eg speech
recognition, face detection, etc., otherwise ex-
plain a little more):

Speech synthesis and recognition

What was the data type of the input (eg image
as a matrix, mp3 format for sound, etc.):

For the speech synthesis the input is the text to
synthesize. For the speech recognition the input is
the audio

How well did it work in terms of accuracy (as
in rough percentage correct, in your experience,
no need to run a formal evaluation), and speed
(as in, fast enough to allow convenient use, or it
slowed down the system):

This worked well for a first version. If the user was
in a quiet space, it worked well. However, outside
conversation was also picked up.

Did it work out of the box? If not, what did you
have to do to use it?

This worked well out of the box. It is
native in modern browsers. You can
check browser compatibility at https:
//developer.mozilla.org/en-US/
docs/Web/API/SpeechRecognition#
browser_compatibility.

Package/Tool/Library (name and version num-
ber):

Prisma (4.13.0)

What machine and OS version did you run it
on (so people will know roughly what compute
power and what environment it needs):

Mac M1 (but should be compatible with any OS)

Where is it available? (eg url): https://www.prisma.io/
What did you use it to do? (One word or phrase
is fine if the answer is the obvious, eg speech
recognition, face detection, etc., otherwise ex-
plain a little more):

Store the comments and the location at which they
were added

What was the data type of the input (eg image
as a matrix, mp3 format for sound, etc.):

This library was used as a database. The inputs
to the database were always comments with (x,y)
location data and text comment data.

How well did it work in terms of accuracy (as
in rough percentage correct, in your experience,
no need to run a formal evaluation), and speed
(as in, fast enough to allow convenient use, or it
slowed down the system):

This database library perfectly suited our needs.

Did it work out of the box? If not, what did you
have to do to use it?

This worked well out of the box. We had to make
a data type of Comment to store in the database.

https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API
https://developer.mozilla.org/en-US/docs/Web/API/SpeechRecognition#browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/SpeechRecognition#browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/SpeechRecognition#browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/SpeechRecognition#browser_compatibility
https://www.prisma.io/

